MTMA (SEMESTER-4) (COURSE: CC-9)

Lecture Notes on PDE: Wave equation

Deriving the 1D wave equation

Most of you have seen the derivation of the 1D wave equation from Newton’s and Hooke's
law. The key notion is that the restoring force due to tension on the string will be
proportionalto the curvature at the point, as indicated in the figure. Then mass times
acceleration pu, should equal to the force, ku . Thus u, =c’u , where c=,/k/p turns out
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to be the velocity of the propagation.

u=u(x,t)
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Figure 1: The restoring forces on a vibrating string, proportional to curvature.

Let’s do it again, from an action integral.

Let u = u(x,t) denote the deplacement of a string from the neutral position w = 0. The
mass density of the string is given by p = p(z) and the elasticity given by & = k(z). In
paricular, in this derivation we do not assuming the the string is uniform. Consider a short
piece of string, in the interval [z, z + Az]. Its mass with be p(z)Az, its velocity u;(z,t), and
thus its kinetic energy, one half mass times velocity squared, is

AK = %p- (u)*Ar.

The total kinetic energy for the string is given by an integral,
1 [t
K = —j p-(u)?dax
2 Jo

From Hooke’s law, the potential energy for a string is (k ,/2)@,-2= where y is the length of the
spring. For the stretched string, the length of the string is given by arclength ds = /1 + u2dx
and so we expect a potential energy of the form

L‘[l
sz — (14 u2)dz.
0 2

4 The action for a given function w is defined as the integral over time of the difference of

these two energies, so
L(u) = / ] ko [1+ (u.)?] drdt.



Adding ¢ times a perturbation h = h(x,t) to the function u gives a new action

T pL
L(u+0h) = L(u) + 5/ / p-ug - hy — k- ughy drdt + higher order in 4.
o Jo

The principle of least action says that in order for « to be a physical solution, the first order
term should vanish for any perturbation h. Integration by parts (in ¢ for the first term, in =
for the second term, and assuming A is zero on the boundary) gives

T pL
O:/ / (_p'utf-’_k'uzm +kzuz)hd$dt
0 0

Since this integral is zero for all choices of h, the first factor in the integral must be zero,
and we obtain the wave equation for an inhomogeneous medium,

P U = k- Uzy +k:r CUg.
When the elasticity k is constant, this reduces to usual two term wave equation
U — CQU-II

where the velocity ¢ = \/k/p varies for changing density.

Solution of the Wave Equation by Separation of Variables:
The Problem

Let u(x,t) denote the vertical displacement of a string from the z axis at position x and time t. The
string has length £. Its left and right hand ends are held fixed at height zero and we are told its initial
configuration and speed. For notational convenience, choose a coordinate system so that the left hand end

of the string is at = = 0 and the right hand end of the string is at = = /.

| 7 T
We assume that the string is undergoing small amplitude transverse vibrations so that u(z,t) obeys the wave

equation

Du(x,t) = Tu(z,t)  forallO<z<fandt>0 (1)

The conditions that the left and right hand ends are held at height zero are encoded in the “boundary

conditions”

forall t >0 (2)
forall t >0 (3)

As we have been told the position and speed of the string at time 0, there are given functions f(x) and g(r)

such that the “initial conditions”

u(z,0) = f(x) forall0 <z < ¢
ug(z,0) = g(x) foral0 <z </

—_——
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are satisfied. The problem is to determine w(x,t) for all x and ¢.



Qutline of the Method of Separation of Variables

We are going to solve this problem in three steps.

Step 1 In the first step, we find all solutions of (1) that are of the special form u(z,t) = X (z)T'(t) for
some function X () that depends on x but not ¢ and some function T'(t) that depends on t but
not x. This is where the name “separation of variables” comes from. It is of course too much to
expect that all solutions of (1) are of this form. But if we find a bunch of solutions X;(z)T;(t)
of this form, then since (1) is a linear equation, Y, a; X;(z)7T;(t) is also a solution for any choice
of the constants a;. (Check this yourself!) If we are lucky (and we shall be lucky), we will be
able to choose the constants a; so that the other conditions (2-5) are also satisfied.

Step 2 We impose the boundary conditions (2) and (3).

Step 3 We impose the initial conditions (4) and (5).

The First Step — Finding Factorized Solutions

The factorized function u(x, t) = X ()T (f) is a solution to the wave equation (1) if and only if
X(@)T"(t) = X" (@)T(t) == L= L0
The left hand side is independent of . So the right hand side, which is equal to the left hand side, must be
independent of t too. The right hand side is independent of 2. So the left hand side must be independent of
x too. So both sides must be independent of both x and #. So both sides must be constant. Let’s eall the
constant o, So we have

XN"z) _ 1 T() _
X =9 =T (6)

= X"(z) —oX(x) =0 T"(t) —c*eT(t) =0

We now have two constant coefficient ordinary differential equations, which we solve in the usual way. We

try X(z) = ™ and T (t) = e*! for some constants r and s to be determined. These are solutions if and only

if

%e‘rz _ge™ — () %Eat 2oett —
= (r? =)™ =0 (s* = Po)ett =0
— =0 s2—c2o=0
— r=-+\o s = +eo

If & # 0, we now have two independent solutions, namely ev™ and e~ v7* for X (z) and two independent
solutions, namely ev7t and e~V for T(t). If & # 0, the general solution to (6) is

X(z) = d1eV7® +doe™V7"  T(t) = dae™V7 + dye V7
for arbitrary constants dq, do, ds and ds4. If ¢ = 0, the equations (6) simplify to

X"z)=0 Tty =0
and the general solution is

Xz)=dy +dox T(t) =dg + dyt
for arbitrary eonstants di, da, da and ds. We have now found a huge number of solutions to the wave
equation (1). Namely
u(z, t) = (dle‘/c_“” - dge_""‘?") (dge“‘/a + d.ie_':\/‘_") for arbitrary ¢ # 0 and arbitrary dy, do, da, d4
u(x, t) = (dl - dgm} (dg - dﬁ} for arbitrary dy. ds, ds, dy
The Second Step — Imposition of the Boundary Conditions

If X;(x)T;(¢t), i = 1,2.3, .- - all solve the wave equation (1), then ¥, a; X;(x)T;(t) is also a solution for
any choice of the constants a;. This solution satisfies the boundary condition (2) if and only if

> aXi0)Ti(t) =0  forallt>0
i



This will certainly be the case if X;(0) = 0 for all i. In fact, if the a;’s are nonzero and the T;(t)’s are
independent, then (2) is satisfied if and only if all of the X;(0)’s are zero. For us, it will be good enough to
simply restrict our attention to X;'s for which X;(0) = 0, so [ am not even going to define what “independent”
means'V. Similarly, u(z,t) = 3, ai Xi(x)Ti(t) satisfies the boundary condition (3) if and only if

Y aX(OTy(t)=0  forallt>0

and this will certainly he the ease ile;{f) =0 for all i. We arc now going to go through the solutions that
we found in Step 1 and discard all of these that fail to satisfy X(0) = X () =0.

First, consider o = 0 so that X (2] = di | daz. The condition X{0) = 0 is sasisfied if and only if dy = 0.
The eondition X (£) = 0 is satisded if and only if d; — fds = 0. 30 the conditiors X (0) = X (¥) = 0 are hoth
satisfied only if d; = dy = 0, in which case X {x) is identically zero. There is ncthing tc be gained by keeping
an identically zero X (z), so we discard o = 0 completely.

Next, consider & # 0 so that dyev® 4 dye™v?®. The condition X [0) = 0 is satisfied if and enly if

£ oot 1

T i 7 Y (u) . . i1 2 1 S 1 mm Trar A% — I I " 1 1 =
oy + iy = 0 o0 owe require Lhat oo = —y . Lhe condiilon A (€] = U s sablsied 1 and only 1l
ok —f7E T — /e
0— diev 4 dye™ —dllie\f —e v :i

If d; were zero, then X (=) would again be identically zero and hence ussless. So instead, we diseard any o
that does not obey
eVIL _ o= VTl = ) i oVTE = VI e VT

In the last step, we multiplied botl sides of ev™ — v Ly e¥"f, One o that obeys ™™ _ 1is ¢ — 0.
But we are now considering cnly a % 0. Fortunately, there are infinitely many complex numbers?! that
work. Tn fact 7 = 1 if and ouly il Lhere is an integer & such thatl

2ol = Wem = Jo=kT1 = o= k%
With /& = kZ: and dy = —d;,

ckw

X ()T (t) = dy (" FF — e "F7) (dge Tt + dye " F)
= 2udy sin (RT’rﬁ:} [(d3 + dy) cos (CkTTt) + #(ds — dy) sin (CkT”t)]
— sin (E£:) ax cos (%6) + B sin (250)]
where ap = 2udy(ds + d4) and B = —2d1(ds — d4). Note that, to this point, dq, d3 and dy are allowed to be
any complex numbers so that ap and §;. are allowed to be any complex numbers.
The Third Step — Imposition of the Initial Conditions
Wz now know thet

=]

0= s (5) o cos (S520) + 3 s (1)
E=1

ux

obeys the wave egnation (1) and the boundary conditions (2) and (3), for any choice of the constants oy, Ge.

It remains only to sce if we ean choose the ag’s and 8y to sasisfy

flz) =u(z,0) = Z ay. sin (LTHI) (4")
k=1

glz) = ug(x,0) = z ,kakT” sin (kT“:r) (5")
k=1

But any (reasonably smooth) function, h(z), defined on the interval 0 < = < ¢, has a unique representationt®

h(z) =Y by sin &5z (7)
k=1



KA

as a linear combination of sin #7*’s and we also know the formula

e
b = %/0 h(z) sink“T"c dx

for the coefficients. We can make (7) match (4') by choosing h(z) = f(z) and bx = ap. This tells us that
ap, = %f; f(x) sin == k” dx. Slmllarlv we can make (7) match (5') by choosing h(z) = g(z) and by = G Ch.

This tells us that CkT =3 fn ) sin %ﬁ dxr. So we have a solution:
z sin (52z) [ cos (£71) + G sin (L2 ¢)] (8)
with

£ £
ap = %f flz) sink—? dx B = % g(z) sin == k“‘ dr
0 0

While the sum (8) can be very complicated, each term, called a “mode”, is quite simple. For each fixed
t, the mode sin (X72) [ay cos (27¢t) + By sin (%57¢)] is just a constant times sin (3%2). As 2 runs from 0
to ¢, the argument of sin (LT“:::) runs from 0 to kwx, which is k half-periods of sin. Here are graphs, at
fixed ¢, of the first three modes, called the fundamental tone, the first harmonic and the second harmonie.
N VN /AN
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fundamental 1¥* harmonic 204 harmonic

For each fixed », the mode sin (57 x) [ax cos (571) + Brsin (521)] is just a constant times cos (£f) plus a
Fccn'

constant times sin ( t). As t increases by one second, the argument, ¢ of hoth cos (L” t) and sin (LCT t)

increases by , which is 3% cycles (i.e. periods). So the fundamental uscﬂlatcb at gycps, the first harmonic
oscillates at ngcpb_, the .'yecond harmonic oscillates at 3gzcps and so on. If the string has density p and

tension T, then we have seen™® that ¢ = 1#%. So to increase the frequency of oscillation of a string vou

inerease the tension and/or decrease the density and for shorten the string.
Example 1 As a concrete example, suppose that

g (z,1) = 33 { .t) foral0 <z < 1landt =0
u(0, ) = u(l.t) = for all t = 0
-(:EO)_:r:(l—:r} forall 0 <z < 1

uy(z,0) = forall0< 2z <1

This is a special case of equations (1 5) with £ =1, f(r) = (1 — =) and g(z) = 0. So, by (8),

u(z.y) = z sin(kwz) oy cos(ckmt) + B sin(ckt)]

k=1
with
1 1
o = Qf 2(1 — ) sin(krze) de Br = Qf 0 sin(krz) de =0
0 0
Using(*)
1 1 1
f wsin(kmr) dr :/ —#g—k.nq{k?rm) dr = _Fg_ / ens(kre) dr = —%%% sinf bz )lD
n i Jo
— —cos(k-r}ﬁ
1 1 . : ] L g
f r?sinlknz) dr = — L sin(kre) de = - L1 [ sin(krz) do = 4= oob(k?ri:)
] 0 <410
= cos(km) - — =



we have

-1 )
o — 2]0 (1 — z) sin(krz) do — 2[ — cos(kﬂ)ﬁ — cos( k) -k %] — L3—‘E,.—3[] — cos(km)]

k353
B { = for k odd

0 for k even
and

oc
ulx,y) = X e sin( k) cos(ckwt)
k=1

E odd
Example 2 As a second concrete example, suppose that

%{m,t}:cﬁg%(m,t) foral0<ax<landt>0
u(0,t) = u(l,t) =0 for all t >0

u(x,0) = sin(5mx) + 2sin(Trz) forall0 <o <1

uy(x,0) =0 forall0 <o <1

This is again a special case of equations (1-5) with £ = 1. So, by (8),

s_<]

ulz,y) = Z sin(kmz) [ak cos(cknt) + Bx sin(cknt)]
k=1

This time it is very inefficient to use the integral formulae to evaluate ag and Sp. It is easier to observe
directly, just by matching coeflicients, that

50 1 ifk=5
sin(brz) + 2sin(Trz) = uw(x,0) = Zﬂk sin(krz) = o= {‘2 ifk="7
5

k=1 0 ifk+#57
0= u(x,0) = chwﬁk sin(krx) = G, =0
k=1

So

ul(x,y) = sin(hme)| eos(hert) + Lsin(Trr) ens(7ert)
Using Fourier Series to Solve the Wave Equation

We can also use Fourier series to derive the solution (8) to the wave equation (1) with boundary
conditions (2,3) and initial conditions (4,5). The basic observation is that, for each fixed ¢ > 0, the unknown
u(x,t) is a function of the one variable » and this function vanishes at = 0 and » = £. Thus, by the Fourier
series theorem and the odd periodic extension trick, u(z, t) has, for each fixed ¢, a unique expansion

ulz,t) = Zbk(t) sin (“Tx) (9)
k=1

By using other periodic extensions, like the even l;eriodic extension, we can get other expansions of u(x,t)
too. But the odd periodic expansion (9) is particularly useful because, with it, the boundary conditions (2.3)
are automatically satisfied. If we substitute = = 0 into the right hand side of (9) we necessarily get zero,
regardless of the value of bg(t), because every term contains a factor of sin(0) = 0. Similarly, if we substitute
r = { into the right hand side of (9) we again necessarily get zero, for any be(t), because sin(km) = 0 for
every integer k.

The solution w(x.t) is completely determined by the, as vet unknown, coeflicients bi(t). Furthermore
these coefficients can be found by substituting w(z,f) = 37, bi(t)sin {“—z) into the three remaining re-

£
quirements (1), (4), (5) on u(z.t). First the wave equation (1):



0= Zup ) - PL%(p,1) _Zbk( )sin (£32) +Z’° 7= bi(t)sin (*32)
k=1
o

Z [ﬁf{z} 4 Kl bm}] sin (kzz)

=1
This says that, for each fixed t > 0, the funection 0, viewed as a function of x, has Fourier series expansion
S ey [b;; Tbk{ )} sin (‘{”W) Applying (9) with h(z) being the zero function and with by replaced

by [b;;{t) + kzg.ffzbk(t)] then forces

by (1) + £ “ Ercp(t) = 2 ] Osin (422) dz =0 for all k.t (1)

Substituting into (4) and (5) gives

&0

u(0,) = by (0)sin (52) = f(x)

k=1
8—“ (0,¢) Zb’ D}sm(kn') =gz

By uniqueness of Fourier coefficients, once again,
£
bi(0) = 2 f f(z)sin (52 da (@)
0

£
b;c(O} = %‘[) g(z) sin (kLE,T) dr (5")

For each fixed k, equations (1'), (4") and (5') constitute one second order constant coefficient ordinary
differential equation and two initial conditions for the unknown function by ().

You already know how to solve constant coefficient ordinary differential equations. The function by (t) =

€' satisfies the ordinary differential equation (1) if and only if

2
r —|—k—§zi—0

whick in surn is true if and only if
r=+ikre
so that the general solution to (17) 1s

T':i. .

he(t) = + MNpe * 0

with Cj, and D}, arbitrary constants. Using e¥1"F** = cos k + isin (E%¢) we may rewrite the solution
A & i g T y

as
by(t) = oy cos (&T’Tt} + [y, sin (&T”t)

with ap = Cp + Dy and S = iCr — iy again arbitrary constants. They are determined by the initial
conditions (4) and (5).

‘
@) = be(0)=ax =2 f F(a)sin (552) da

Df .
(5) = b(0) = dcTw’Sk: %/D g(z)sin (%) dr = [ = ﬁfo g(z) Sm(k?)da:

This gives us the solution (8) once again.

Classification of second order, linear PDEs:




A second order linear PDE in two variables x,t is an equation of the form
Augy + Bug + Cuge + Dug + Euy + Fu= G,

where the coefficients A, B,C, D, E, F, G are constants, or specified functions of the variables
x,t. The equation is classified into one of three types, based on the coeflicients A, B, (| as

o Elliptic: if B> — 4AC < 0;
e Parabolic: if B2 — 4AC = 0;
e Hyperbolic: if B> — 4AC > 0.

So for instance, Laplace’s equation is elliptic, the heat equation is parabolic, and the wave
equation is hyperbolic. It is useful to classify equations because the solution techniques, and
properties of the solutions are different, depending on whether the equation is elliptic,
parabolic, or hyperbolic. Also, the physical nature of the corresponding problems are
different. For instance, elliptic equations often arise in steady-state and equilibrium
problems; parabolic equations arise in diffusion problems; hyperbolic problems arise in
wave motion and vibrational problems.

An equation can be of mixed type if it changes from one type to another, depending on the
value of the functions A,B,C. For instance, the equation

tupy + 1wy =0

is of mixed type, for B2 — 4AC = —4t is zero along the line ¢t = 0 (parabolic), is positive for
t < 0 (hyperbolic), and negative for ¢ = 0 (elliptic).

When A,B,C are constant, it is always possible to make a linear change of variables to put
the equation in a canonical form. This is result is as simple as diagonalizing a 2 by 2
symmetric matrix. The canonical forms as

e Elliptic: uy, + wy = G, y, u, uy, uy);
e Parabolic: u,, = Gz, y,u,us,u,)i;

e Hyperbolic: u,, —uy = G(x,y, u,us, u,) or uyy = Gz, y, v, uy, uy).

The form B? — 4AC is reminiscent of the quadratic formula, but it really should make
you think of the determinant of the matrix

A B/2
B2 C
where the sign of the determinant tells you whether there are two non-zero eigenvalues of

the same sign (elliptic), opposite sign (hyperbolic), or one zero eigenvalue (parabolic). This
is the key to understanding the classification for linear PDEs with more variables.

For a function u = u(xy, z9,73,. .., ,T,) of n independent variables, the general linear
second order PDE will be of the form

> 4136I5I3+236I1+Cu_9

i,j=1 1=1



where the coefficients A;;, B;,C, D are constants or functions only of the independent vari-
ables. The matrix
A - [;"153']
can be chosen symmetric. The equation is then classified into four types, as
e Elliptic: if all the eigenvalues of A are nonzero, and of the same sign;
® Parabolic: if exactly one of the eigenvalues is zero, and the rest have the same sign;
* Hyperbolic: if n — 1 of the eigenvalues are of the same sign, the other of opposite sign;
o Ultrahyperbolic: If at least two eigenvalues are positive, at least two negative, and none
are zero.
This doesn’t cover all cases, but it does cover most of the interesting ones. The first three
are the typical ones that appear in physics.

Boundary and initial conditions:

Usually we think of satisfying a PDE only in a particular region in ryz space, for instance in
a ball of some radius R. If we denote the region by (), typically it is assumed to be an open,
connected set with some piecewise smooth boundary d€). A boundary condition is then an
additional equation that specifies the value of v and some of its derivatives on the set 9€.
For instance,

w= f(x,y,z) on
or
u, = g(zr,y,z) on 90
are boundary conditions.
A L i3 Y : 3 1 3 P 3
An wnzteal condition, on the other hand, specifies the value of » and some of its derivatives
at some initial time ¢, (often £, — 0). So the following are examples of initial conditions:

wix,y.z,ln) = [{a,y.2) on O
ar
w(x,y,z,t0) = flx,y,z) on Q.
As an example, ecnsider the 1T) wave equation restricted to the mterval [, L]. The region

of interest is the open interval {1 = (0, L) with boundary points + =0, L. A typical physieal
problem is to solve (for u = u(x,t)) the equation

wy = e ugy, on the region 0 < z < L,0 < ¢
u(0.t) = 0, a boundary condition
u(L.t) = 0, a boundary condition
u(x,0) = flx). an initial condition, at th =0
u(z,0) — glz), an initial condition.

Cauchy, Dirichlet, and Neumann conditions:

We will often hear reference to these three types of boundary/initial conditions. So let’s
make it clear what it is.

The Cauchy condition specifies the values of u and several of its normal derivatives, along
some given smooth surface in the coordinate space of all the independent variables
(including time). To have any hope of getting a well-posed problem, it is important to get



the dimensions right. So, if u is a function of n variables, the surface S should have
dimension n - 1 (it is a hypersurface), and if the PDE is order k, the Cauchy data must specify
the values of u and its first k — 1 derivatives along the normal to S:

U= f[)-. Uy = fl.\ Upny = fi:- ceUpp = fk—l on Sr:

where fy,..., fi_q1 are given functions. Here u, means the derivative along the normal to
the surface. If u is an amalytic function, you can consider doing a power series expansion
at points along S, using the Cauchy data and PDE to solve for the coefficients in series
expansion. 8

The initial value problem

u(z,y,2z,0) = f(r,y,z) forall z,y, =
w(zr,y,z,0) = g(z,y z) for all z,y, =

is an example of a Cauchy problem for any second order ODE, with hypersurface 5 =
{(r,y.2,1) : £=0).

It is important that the hypersurface not be a characteristic surface for the Cauchy problem
to be solvable. We won’t define characteristic surface here; they come from the coefficients
of the PDE, and you would notice if you were on one!

The Dirichlet condition specifies the value of u on the boundary 9Q of the region of interest.
Think Dirichlet = Data on boundary.
The Neumann condition specifies the value of the normal derivative, un,Of the boundary 9Q.

Think Neumann = Normal derivative on boundary.

Note that 9Q is a hypersurface, and so the Dirichlet and Neumann conditions each specify
less information than the Cauchy condition for second order and higher PDEs. It is rather
remarkable that for certain elliptic problems, merely Dirichlet or Neumann data alone
suffices to solve the problem.

The point of including boundary and initial problems is to force our solutions to be unique,
and hopefully well-behaved. Let’s look at what it means to pose a good mathematical

problem.

Well-posed problems:

We say a mathematical problem is well-posed if it has the following three properties:

1. Existence: There exists at least one solution to the problem;

2. Uniqueness: There is at most one solution;

3. Stability:The unique solution depends in a continuous manner on the data of the
problem. A small change in the data leads to only a small changes in the solution.

It is easy enough to illustrate these ideas with the example of solving for x a linear system of
equations

Ax =y,
for given matrix A and vector y. If the matrix A is singular, for some inputs y, no solution may
exist; for others inputs y there may be multiple solutions. And if A is close to singular, a
small change in y can lead to a large change in solution x.



To see this in a PDE context, consider the following problem of solving the 1D heat equation
in the positive quadrant x, t > 0. We add some reasonable boundary and initial conditions to

try to force a unique solution:

Uy = gy, T>0,t>10
u(z,0) = 0, x > 0, a boundary condition
u(0,t) = 0, t > 0, an initial condition.

The boundary and initial conditions strongly suggest “the solution” is
u(z,t) =0,

which is indeed a solution satisfyving the BC and IC. But it is not the only solution; for
instance, another solution satisfiving that BC and IC is the function
. I — 2

u(z,t) = fs—gf fat,
It is easy to check that this function satisfies the PDE in the open quadrant x, t >0 and
extends to be zero on both the positive x axis x > 0, and the positive t-axis t > 0. It is curious
that by ignoring the behaviour of the function at the origin (x, t) = (0, 0) somehow allows for
more than one solution.

One might suppose this is only a mathematical oddity; perhaps one would reject the second
solution based on physical grounds. However, keep in mind that many PDE problemsmay be
solved numerically: it is unlikely that your numerical method will be smart enough to reject
non-physical solutions, without you considering these possibilities.

The heat equation can also be used to illustrate instability in solutions by observing that
diffusion processes, when run backwards, tend to be chaotic. But instability can also come
up in elliptic equations as well (which we often think of as “nice”). For instance, fix £¢>0 a
small parameter and consider Laplace’s equation on the upper half plane, with

Upe + e = 0, —o0 < T <00, t=0
u(z,0) = 0 all z, a boundary condition
LT .
w(z,0) = esin— all z, a boundary condition.

€

This has solution u(z,t) = €>sin(x/e)sinh(t/e), which gets very large as ¢ — 0. Compare
this with the zero solution w,(x,t) = 0, which is the solution to the problem for e = 0. Thus
we have an instability: the input u(z,0) = esin(x/e) goes to zero as € — 0 but the output
does not converge to the zero solution.

Existence and uniqgueness theorems:

The first result, the Cauchy-Kowalevski Theorem, tells us that the Cauchy problem is always
locally solvable, if all the functions that appear are analytic. The result is usually stated in
terms of an initial value problem; the general result follows by transforming the general
Cauchy problem, locally, to an initial value problem.

Theorem: (Cauchy-Kowalevski)



If the functions F, fg, fy, . . . fi-1 are analytic near the origin, then there is a neighbourhood of
the origin where the following Cauchy problem (initial value problem) has a unique analytic

solution u = u(x, y, z, t):

Ik
%(Ir,y,;,t) = Flz,y,z,t,u,u,,u,,u,,..) a k-th order PDE
Fu .

ﬁ(;ﬁ,y,;,o_} = fij(x,y,2) forall0 <5 < k.

The statement means to indicate that the function F depends on the independent variable x,
Yy, z, t as well as u and all its partial derivatives up to order k, except for the
k
“distinguished”one ng The proof amounts to chasing down some formulas with power
t
series. We've stated the case for (3+1) dimensions, but it is true in other dimensions as well.



