
MTMA (SEMESTER-4) (COURSE: CC-9) 

Lecture Notes on PDE: Wave equation 

Deriving the 1D wave equation 

Most of you have seen the derivation of the 1D wave equation from Newton’s and Hooke’s 

law. The key notion is that the restoring force due to tension on the string will be 

proportionalto the curvature at the point, as indicated in the figure. Then mass times 

acceleration
ttuρ should equal to the force, 

xxku . Thus 
xxtt

ucu
2= , where ρkc =  turns out 

to be the velocity of the propagation.  

 
 



 
 
Solution of the Wave Equation by Separation of Variables:  

 



 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
 

Classification of second order, linear PDEs: 

 



 

 
So for instance, Laplace’s equation is elliptic, the heat equation is parabolic, and the wave 

equation is hyperbolic. It is useful to classify equations because the solution techniques, and 

properties of the solutions are different, depending on whether the equation is elliptic, 

parabolic, or hyperbolic. Also, the physical nature of the corresponding problems are 

different. For instance, elliptic equations often arise in steady-state and equilibrium 

problems; parabolic equations arise in diffusion problems; hyperbolic problems arise in 

wave motion and vibrational problems. 

 

An equation can be of mixed type if it changes from one type to another, depending on the 

value of the functions A,B,C. For instance, the equation 

 

 
 

When A,B,C are constant, it is always possible to make a linear change of variables to put 

the equation in a canonical form. This is result is as simple as diagonalizing a 2 by 2 

symmetric matrix. The canonical forms as 

 

 

 

 



 
can be chosen symmetric. The equation is then classified into four types, as 

• Elliptic: if all the eigenvalues of A are nonzero, and of the same sign; 

• Parabolic: if exactly one of the eigenvalues is zero, and the rest have the same sign; 

• Hyperbolic: if n − 1 of the eigenvalues are of the same sign, the other of opposite sign; 

• Ultrahyperbolic: If at least two eigenvalues are positive, at least two negative, and none 

are zero. 

This doesn’t cover all cases, but it does cover most of the interesting ones. The first three 

are the typical ones that appear in physics. 

 

 

Boundary and initial conditions: 

 

 

 

 
 

 

Cauchy, Dirichlet, and Neumann conditions:  

 

We will often hear reference to these three types of boundary/initial conditions. So let’s 

make it clear what it is. 

 

The Cauchy condition specifies the values of u and several of its normal derivatives, along 

some given smooth surface in the coordinate space of all the independent variables 

(including time). To have any hope of getting a well-posed problem, it is important to get 



the dimensions right. So, if u is a function of n variables, the surface S should have 

dimension n − 1 (it is a hypersurface), and if the PDE is order k, the Cauchy data must specify 

the values of u and its first k − 1 deriva7ves along the normal to S: 

 

 

 
 

It is important that the hypersurface not be a characteristic surface for the Cauchy problem 

to be solvable. We won’t define characteristic surface here; they come from the coefficients 

of the PDE, and you would notice if you were on one! 

 

The Dirichlet condition specifies the value of u on the boundary Ω∂  of the region of interest. 

Think Dirichlet = Data on boundary. 

The Neumann condition specifies the value of the normal derivative, ηu ,of the boundary Ω∂ . 

Think Neumann = Normal derivative on boundary. 

 

Note that Ω∂  is a hypersurface, and so the Dirichlet and Neumann conditions each specify 

less information than the Cauchy condition for second order and higher PDEs. It is rather 

remarkable that for certain elliptic problems, merely Dirichlet or Neumann data alone 

suffices to solve the problem. 

 

The point of including boundary and initial problems is to force our solutions to be unique, 

and hopefully well-behaved. Let’s look at what it means to pose a good mathematical 

problem. 

 

Well-posed problems:  

 

We say a mathematical problem is well-posed if it has the following three properties: 

1. Existence: There exists at least one solution to the problem; 

2. Uniqueness: There is at most one solution; 

3. Stability:The unique solution depends in a continuous manner on the data of the 

problem. A small change in the data leads to only a small changes in the solution. 

 

It is easy enough to illustrate these ideas with the example of solving for x a linear system of 

equations 

Ax = y, 

for given matrix A and vector y. If the matrix A is singular, for some inputs y, no solution may 

exist; for others inputs y there may be multiple solutions. And if A is close to singular, a 

small change in y can lead to a large change in solution x. 

 



To see this in a PDE context, consider the following problem of solving the 1D heat equation 

in the positive quadrant x, t > 0. We add some reasonable boundary and initial conditions to 

try to force a unique solution: 

 

 
It is easy to check that this function satisfies the PDE in the open quadrant x, t >0 and 

extends to be zero on both the positive x axis x > 0, and the positive t-axis t > 0. It is curious 

that by ignoring the behaviour of the function at the origin (x, t) = (0, 0) somehow allows for 

more than one solution. 

 

One might suppose this is only a mathematical oddity; perhaps one would reject the second 

solution based on physical grounds. However, keep in mind that many PDE problemsmay be 

solved numerically: it is unlikely that your numerical method will be smart enough to reject 

non-physical solutions, without you considering these possibilities. 

 

The heat equation can also be used to illustrate instability in solutions by observing that 

diffusion processes, when run backwards, tend to be chaotic. But instability can also come 

up in elliptic equations as well (which we often think of as “nice”). For instance, fix 0>ε  a 

small parameter and consider Laplace’s equation on the upper half plane, with 

 

 
 
Existence and uniqueness theorems:  

 

The first result, the Cauchy-Kowalevski Theorem, tells us that the Cauchy problem is always 

locally solvable, if all the functions that appear are analytic. The result is usually stated in 

terms of an initial value problem; the general result follows by transforming the general 

Cauchy problem, locally, to an initial value problem. 

 

Theorem: (Cauchy-Kowalevski) 



If the functions F, f0, f1, . . . fk−1 are analytic near the origin, then there is a neighbourhood of 

the origin where the following Cauchy problem (initial value problem) has a unique analytic 

solution u = u(x, y, z, t): 

 

 
 

The statement means to indicate that the function F depends on the independent variable x, 

y, z, t as well as u and all its partial derivatives up to order k, except for the 

“distinguished”one 
k

k
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∂

∂
. The proof amounts to chasing down some formulas with power 

series. We’ve stated the case for (3+1) dimensions, but it is true in other dimensions as well. 


